No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
Line spectra are obtained when individual elements are heated using a high-voltage electrical discharge. This heating causes excitation of the element and a subsequent emission of distinct lines of colored light are obtained. Each element has its own unique emission line spectrum; therefore, if any of the tested substances were the same, their spectra would match. However, this is not the case so none of the substances are the same.
Answer:
343/1500
Explanation:
Power: This can be defined as the product force and velocity. The S.I unit of power is Watt (w).
From the question,
P' = mg×v................. Equation 1
Where P' = power used to gain an altitude, m = mass of the engine, g = acceleration due to gravity of the engine, v = velocity of the engine.
Given: m = 700 kg, v = 2.5 m/s, g = 9.8 m/s²
Substitute into equation 1
P' = 700(2.5)(9.8)
P' = 17150 W.
If the full power generated by the engine = 75000 W
The fraction of the engine power used to make the climb = 17150/75000
= 343/1500
Answer:
0.615 m
Explanation:
We need to determine the force on the spring first. By Newton's second law of motion, force is the product of the mass and acceleration. The mass is given.
The acceleration is determined using the equation of motion.
Given parameters:
Initial velocity, <em>u</em> = 0.00 m/s
Distance, <em>s</em> = 4.19 m
Time, <em>t</em> = 0.601 s
We use the equation

With <em>u</em> = 0.00 m/s,



The force is

From Hooke's law, the extension, <em>e</em>, of a string is given by

where <em>k</em> is the spring constant.
Hence,
