Answer:
when sun shines through rain
Explanation:
Rainbow is an arc of different colours that appears in the sky when sun shines through rain
Answer:
463.4 m/s
Explanation:
The escape velocity on the surface of a planet/asteroid is given by
(1)
where
G is the gravitational constant
M is the mass of the planet/asteroid
R is the radius of the planet/asteroid
For the asteroid in this problem, we know
is the density
is the volume
So we can find its mass:

Also, the asteroid is approximately spherical, so its volume is given by

where R is the radius. Solving the formula for R, we find its radius:
![R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3(3.32\cdot 10^{12}m^3)}{4\pi}}=9256 m](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.32%5Ccdot%2010%5E%7B12%7Dm%5E3%29%7D%7B4%5Cpi%7D%7D%3D9256%20m)
So now we can use eq.(1) to find the escape velocity:

Answer:
hello the diagram relating to this question is attached below
a) angular accelerations : B1 = 180 rad/sec, B2 = 1080 rad/sec
b) Force exerted on B2 at P = 39.2 N
Explanation:
Given data:
Co = 150 N-m ,
<u>a) Determine the angular accelerations of B1 and B2 when couple is applied</u>
at point P ; Co = I* ∝B2'
150 = ( (2*0.5^2) / 3 ) * ∝B2
∴ ∝B2' = 900 rad/sec
hence angular acceleration of B2 = ∝B2' + ∝B1 = 900 + 180 = 1080 rad/sec
at point 0 ; Co = Inet * ∝B1
150 = [ (2*0.5^2) / 3 + (2*0.5^2) / 3 + (2*0.5^2) ] * ∝B1
∴ ∝B1 = 180 rad/sec
hence angular acceleration of B1 = 180 rad/sec
<u>b) Determine the force exerted on B2 at P</u>
T2 = mB1g + T1 -------- ( 1 )
where ; T1 = mB2g ( at point p )
= 2 * 9.81 = 19.6 N
back to equation 1
T2 = (2 * 9.8 ) + 19.6 = 39.2 N
<u />
Answer:
I am pretty sure it is C
Explanation:
It can be found all over the universe
From what I know; When a sample of liquid water vaporizes into water vapor, the electrons in the water sped up due to heat.