Answer:
A.
-19 9 7
[15 -7 6 ]
-2 1 1
Step-by-step explanation:
I hope this helps you
1)
x= -2y
2. (-2y)+4y=0
0=0
2)
x+2x= -3
x=-1
y= -2
3)
7x+2x+2=4
9x=2
x=2/9
y=2/9+1
y=11/9
Answer:
SSS is the congruence theorem that can be used to prove Δ LON is congruent to Δ LMN ⇒ 1st answer
Step-by-step explanation:
Let us revise the cases of congruence
- SSS ⇒ 3 sides in the 1st Δ ≅ 3 sides in the 2nd Δ
- SAS ⇒ 2 sides and including angle in the 1st Δ ≅ 2 sides and including angle in the 2nd Δ
- ASA ⇒ 2 angles and the side whose joining them in the 1st Δ ≅ 2 angles and the side whose joining them in the 2nd Δ
- AAS ⇒ 2 angles and one side in the 1st Δ ≅ 2 angles and one side in the 2nd Δ
- HL ⇒ hypotenuse leg of the 1st right Δ ≅ hypotenuse leg of the 2nd right Δ
In triangles LON and LMN
∵ LO ≅ LM ⇒ given
∵ NO ≅ NM ⇒ given
∵ LN is a common side in the two triangles
- That means the 3 sides of Δ LON are congruent to the 3 sides
of Δ LMN
∴ Δ LON ≅ LMN ⇒ by using SSS theorem of congruence
SSS is the congruence theorem that can be used to prove Δ LON is congruent to Δ LMN
Answer:
1/8
Step-by-step explanation: