You need to use q = mc(delta t)
<span>Solve for c: </span>
<span>c = q / m(delta t) </span>
<span>q = 55.o J </span>
<span>m = 11.0 g </span>
<span>delta t = 24.5 - 13.0 = 11.5 deg C </span>
<span>c = 55 J / 11.0 g)(11.5 C) </span>
<span>c = 0.435 J/ g C</span>
Moles Li = 3.50 g / 6.941 g/mol= 0.504
the ratio between Li and N2 is 6 : 1
moles N2 required = 0.504 /6=0.0840
we have 3.50 g / 28.0134 g/mol=0.125 moles of N2 so N2 is in excess
the ratio between Li and Li3N is 6 : 2
moles Li3N = 0.504 x 2 /6=0.168
mass Li3N = 0.168 mol x 34.8297 g/mol=5.85 g
The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distributed in the space surrounding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space.
plz mark me as brainliest :)
Answer:
1
Explanation:
C9H8O4 + 9 O2 = 9 CO2 + 4 H2O.
The coefficent is 1