Answer:
Option A. 1.8×10²⁴ molecules.
Explanation:
Data obtained from the question include:
Number of mole of methane = 3 moles
Number of molecules of methane =?
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ molecules.
Thus, 1 mole of methane equally contains 6.02×10²³ molecules.
With the above information in mind, we can obtain the number of molecules in 3 moles of methane as follow:
1 mole of methane contains 6.02×10²³ molecules.
Therefore, 3 moles of methane will contain = 3 × 6.02×10²³ = 1.8×10²⁴ molecules.
Thus, 3 moles of methane contains 1.8×10²⁴ molecules.
Answer:
loses, gains
Explanation:
In the ionic compound aluminum selenide, each atom of aluminum will lose electrons while each atom of selenium will gain the electrons.
An ionic compound is an interatomic bond formed between a metal and non-metal. The metal is less electronegative compared to the non-metal. In this case, the metal will lose electrons to become positively charged whereas the non-metal, selenium will gain the electron to become negatively charged.
The electrostatic attraction between these oppositely charged ions leads to the formation of the ionic bond.
Answer:
599.26 grams of potassium sulfate will be produced.
Explanation:

Moles of chromium (III) sulfate = 
According to reaction, 1 mole of chromium (III) sulfate gives 3 moles of potassium sulfate.
Then 1.1480 moles of chromium (III) sulfate will give:

Mass of 3.4440 moles of potassium sulfate:
= 3.4440 mol × 174 g/mol = 599.26 g
599.26 grams of potassium sulfate will be produced.
Solid-When a solid is heated the particles gain energy and start to vibrate faster and faster. Initially the structure is gradually weakened which has the effect of expanding the solid. Further heating provides more energy until the particles start to break free of the structure. Although the particles are still loosely connected they are able to move around. At this point the solid is melting to form a liquid.
Liquid-As the liquid gets warmer more particles have sufficient energy to escape from the liquid. Eventually even particles in the middle of the liquid form bubbles of gas in the liquid. At this point the liquid is boiling and turning to gas. The particles in the gas are the same as they were in the liquid they just have more energy. At normal atmospheric pressure all materials have a specific temperature at which boiling occurs. This is called the "boiling point" or boiling temperature.
Description of Phase Change Term for Phase Change Heat Movement During Phase Change
Solid to liquid Melting Heat goes into the solid as it melts.
Liquid to solid Freezing Heat leaves the liquid as it freezes.
Liquid to gas Vaporization, which includes boiling and evaporation. Heat goes into the liquid as it vaporizes.
Gas to liquid Condensation Heat leaves the gas as it condenses.
Solid to gas Sublimation Heat goes into the solid as it sublimates.
U-238 has 92 protons, 146 neutrons, and 92 electrons.
Rn-222 has 86 protons, 136 neutrons, and 86 electrons.
U-238 is Uranium 238 and Rn-222 is Radon 222.