Aluminum is the correct answer
There are 10 hydrogen atoms that bind and there are 2 pairs of free electrons in the non-binding O atom
<h3>Further explanation</h3>
Aldehydes are alkane-derived compounds containing carbonyl groups (-CO-) where one bond binds to an alkyl group while another binds to a hydrogen atom.
The general structure is R-CHO with the molecular formula :

Naming is generally the same as the alkane by replacing the suffix with -al
Butanal or butyraldehyde is an aldehyde which has 4 C atoms
Inside the structure there are 3 atoms involved in bonding:
- 1. Atom C with 4 valence electrons, requires 4 electrons to reach the octet
- 2. Atom O with 6 valence electrons, requires 2 electrons to reach the octet
- 3. Atom H with 1 valence electron, requires 1 electron to reach a duplet
In describing Lewis's structure the steps that can be taken are:
- 1. Count the number of valence electrons from atoms in a molecule
- 2. Give each bond a pair of electrons
- 3. The remaining electrons are given to the atomic terminal so that an octet is reached
- 4. The remaining electrons that still exist in the central atom
- 5. If the central atom is not yet octet, free electrons are drawn to the central atom to form double bonds
In the Butanal structure (C₄H₈O) there is 1 double bond of the functional group (-CHO) between the C atom and the O atom
<h3>Learn more:
</h3>
Adding electron dots
brainly.com/question/6085185
Ionic bonding
brainly.com/question/1603987
Formal charge
brainly.com/question/7190235
Keywords: butanal, aldehyde, Lewis structure, a valence electron
8:24 = 0.333(3) pints is one percent
0.333(3)* 100=33.333(3) pints will be 24% mixture with the water
33.3333-8=25.333 pints of water is required for producing 24% mixture
25.3333 pints of pure water and 8 pints of juce.
Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.