Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)
Answer:
Original length = 2.97 m
Explanation:
Let the original length of the pendulum be 'L' m
Given:
Acceleration due to gravity (g) = 9.8 m/s²
Original time period of the pendulum (T) = 3.45 s
Now, the length is shortened by 1.0 m. So, the new length is 1 m less than the original length.
New length of the pendulum is, 
New time period of the pendulum is, 
We know that, the time period of a simple pendulum of length 'L' is given as:
-------------- (1)
So, for the new length, the time period is given as:
------------ (2)
Squaring both the equations and then dividing them, we get:

Now, plug in the given values and calculate 'L'. This gives,

Therefore, the original length of the simple pendulum is 2.97 m
Answer:
10 litres.
Explanation:
The air fuel ratio for aircraft is 12:1. It is due to simplicity piper archer is equipped with continuous flow injection system. There is a fuel sensing is Piper Archer which informs the pilot about the low fuel when the fuel level reaches to as low as 10 litres only in the tank. The yellow low furl light will illuminate to alert the pilot.