1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
4 years ago
6

You observe a very large and very hot star in the constellation orion. on the same night, you observe another star in orion that

is much smaller but has the same temperature. which star is more luminous?
Physics
1 answer:
Neporo4naja [7]4 years ago
7 0
The bigger one as the luminosity has a direct exponential relationship with R of the star so the star which has more surface area will be more luminous than the smaller one
You might be interested in
Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible fricti
Citrus2011 [14]

Explanation:

Momentum is conserved.

a) In the first scenario, Olaf and the ball have the same final velocity.

mu = (M + m) v

(0.400 kg) (10.9 m/s) = (70.2 kg + 0.400 kg) v

v = 0.0618 m/s

b) In the second scenario, the ball has a final velocity of 8.10 m/s in the opposite direction.

mu = mv + MV

(0.400 kg) (10.9 m/s) = (0.400 kg) (-8.10 m/s) + (70.2 kg) v

v = 0.108 m/s

6 0
4 years ago
A ball is thrown up into the air with 100 j of kinetic energy, which is transformed to gravitational potential energy at the top
jenyasd209 [6]

The kinetic energy when it returns to its original height is 100 J

Solution:

The ball is thrown up with a Kinetic Energy K. E. = 0.5×m×v² = 100 J

Therefore the final height is given by

<u>u² = v² -2·g·s</u>

Where:

u = final velocity = 0

v = initial velocity

s = final height

Therefore v² = 2·g·s = 19.62·s

P.E = Potential Energy = m·g·s

Since v² = 2·g·s

Substituting the value of v² in the kinetic energy formula, we obtain

K. E. = 0.5×m×2·g·s = m·g·s = P.E. = 100 J

When the ball returns to the original height, we have

v² = u² + 2·g·s

Since u = 0 = initial velocity in this case we have

v² = 2·g·s and the Kinetic energy = 0.5·m·v²

Since m and s are the same then 0.5·m·v² = 100 J.

As the height of the ball increases the kinetic energy of the ball is converted into gravitational potential energy. This means that the kinetic energy of the bullet is reduced. When the ball reaches its maximum height, it momentarily comes to rest and the ball's kinetic energy is zero. When the ball hits the ground, its potential energy is converted to kinetic energy.

Learn more about Kinetic energy here:-brainly.com/question/25959744

#SPJ4

6 0
1 year ago
The trajectory of a projectile always ________________. The trajectory of a projectile always ________________. is a straight li
jenyasd209 [6]

Answer:

curves downward, below the initial velocity vector.

Explanation:

Projectile launches are generally divided into two types: the oblique throw and the free fall. The free fall of bodies consists of throwing or abandoning projectiles from a hill or any unevenness that has a height in relation to a frame (usually the ground), while the oblique launch consists of launching a projectile at an angle. any relative to a frame (usually the ground).

Regardless of the type, when reading the paragraph above, we can say that the trajectory of a projectile will always be curved down and below the initial velocity vector.

6 0
4 years ago
Read 2 more answers
If a conducting loop of radius 10 cm is onboard an instrument on Jupiter at 45 degree latitude, and is rotating with a frequency
Pepsi [2]

Answer:

a)  fem = - 2.1514 10⁻⁴ V,  b) I = - 64.0 10⁻³ A, c)    P = 1.38  10⁻⁶ W

Explanation:

This exercise is about Faraday's law

         fem = - \frac{ d \Phi_B}{dt}

where the magnetic flux is

        Ф = B x A

the bold are vectors

        A = π r²

we assume that the angle between the magnetic field and the normal to the area is zero

         fem = - B π 2r dr/dt = - 2π B r v

linear and angular velocity are related

        v = w r

        w = 2π f

        v = 2π f r

we substitute

        fem = - 2π B r (2π f r)

        fem = -4π² B f r²

For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T

we reduce the magnitudes to the SI system

       f = 2 rev / s (2π rad / 1 rev) = 4π Hz

we calculate

       fem = - 4π² 428 10⁻⁶ 4π 0.10²

       fem = - 16π³ 428 10⁻⁶ 0.010

       fem = - 2.1514 10⁻⁴ V

for the current let's use Ohm's law

        V = I R

        I = V / R

         I = -2.1514 10⁻⁴ / 0.00336

         I = - 64.0 10⁻³ A

Electric power is

        P = V I

        P = 2.1514 10⁻⁴ 64.0 10⁻³

        P = 1.38  10⁻⁶ W

6 0
3 years ago
Need Help ASAP!!<br> (Picture)
olchik [2.2K]

Answer:225000000000

Explanation:

5 0
3 years ago
Other questions:
  • The process by wich metamorphic rock changes to igneous rock begins with
    10·1 answer
  • Two protons are going up when they enter a magnetic field that points toward you. What happens to the motion of the particles
    14·1 answer
  • Which best describes the beginning of the Big Bang Theory?
    13·2 answers
  • Name three possible end stages of a star​
    6·1 answer
  • Someone help pleaseee! serious answers only. how many miles are in 15,000 feet? 1 mile= 5,280 feet
    6·2 answers
  • A projectile is shot horizontally at 23.4 m/s from the roof of a building 55.0 m tall. (a) Determine the time necessary for the
    6·1 answer
  • The temperature inside a Carnot refrigerator placed in a kitchen at 22 degree Celcius is 2 degree Celcius. The heat extracted fr
    5·1 answer
  • Solar____is the energy output from the sun
    14·2 answers
  • 20kVA, 300/240 V, 50Hz singal phase transformer has 80 turns on secondary winding. calculate number of primary winding turns, fu
    12·1 answer
  • calculate the tension in the horizontal rope. (the horizontal and the vertical ropes are not connected to each other. they are b
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!