Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
Answer: Option B.
Since here the truck is moving on a circular track, it will experience centripetal force.
F(centripetal) = m × acc
or
where r is the radius of the track.
m is the mass of truck
v is the speed of the truck.
Given: v = <span>13 m/s
m = </span><span>1,600 kg
</span>F = 3300 Newton
To find = radius of track=?
r = 81.94 m
Therefore, radius of track is 81.94 m
Answer:
The carriage has the energy, W = 2469.6 J
Explanation:
Given data,
The height of the hill, h = 21 m
The carriage with the baby weighs, m = 12 kg
The energy possessed by the body due to its position is the potential energy,
<em>W = P.E = mgh joules</em>
Substituting the values,
W = 12 x 9.8 x 21
= 2469.6 J
Hence, the carriage has the energy, W = 2469.6 J