1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
12

If the speed of an object doubles, how does that affect its kinetic energy? A. Halves B. Doubles C. Quarters D. Quadruples

Physics
2 answers:
kvasek [131]3 years ago
7 0

Answer is :

D. Quadruples

wlad13 [49]3 years ago
6 0

Answer:

D. Quadruples

Explanation:

If the speed of an object doubles, it affects its kinetic energy because it quadruples.

You might be interested in
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving ele
siniylev [52]

The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.

So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>  

Please vote Brainliest (:

5 0
3 years ago
Read 2 more answers
What is the role of gravity when it comes to changing the velocity of objects?
Alex787 [66]

Gravity is the attraction of every body to every other body due to the masses of each body. The larger the mass, the greater the force. It also depends on the distances: the closer the bodies, the greater the force. Gravity is directed toward the center of a body, and the distance is measured from the center.

When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.

3 0
3 years ago
In a chemical reaction, molecules of hydrogen gas (H2) react with molecules of oxygen gas (O2) in a sealed reaction chamber to p
11Alexandr11 [23.1K]

Answer:

Option (B) is correct.

Explanation:

Given that the molecules of hydrogen gas (H_2) react with molecules of oxygen gas (O_2) in a sealed reaction chamber to produce water (H_2O).

The governing equation for the reaction is

2H_2 +O_2 \rightarrow 2H_2O

From the given, the only fact that can be observed that 2 moles of H_2 and 1 mole of O_2 reacts to produce 2 moles of H_2O.

As the mass of 1 mole of H_2 = 2 grams ... (i)

The mass of 1 mole of O_2 = 32 grams ...(ii)

The mass of 1 mole of H_2O = 18 grams (iii)

Now, the mass of the reactant = Mass of 2 moles of H_2 + mass 1 mole of  O_2

= 2 \times 2 + 32  [ using equations (i) and (ii)]

=4+32 = 36 grams.

Mass of the product = Mass of 2 moles of H_2O

=2\times 18 [ using equations (iii)]

=36 grams

As the mass of reactants = mass of the product.

So, mass is conserved.

Hence, option (B) is correct.

8 0
3 years ago
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
3 years ago
Please, Help!!
Elenna [48]

Let, 1st force = a

2nd force = b

A.T.Q,

a+b = 10

a-b = 6

Calculate for a & b, you'll get a=8 & b= 2

After increasing by 3, it'll be a = 8+3 = 11 & b=2+3 = 5

Resultant force at 90 degree angle = 11+5 = 16 Newtons

7 0
3 years ago
Read 2 more answers
Other questions:
  • On a Vernier Caliper, how do you know which mark to use on the very top scale?
    15·1 answer
  • Why did scientists using classical, Newtonian physics have difficulty explaining the photoelectric effect?
    9·2 answers
  • A hammer taps on the end of a 5.0-mm-long metal bar at room temperature. A microphone at the other end of the bar picks up two p
    15·1 answer
  • If you were trying to describe the difference between power and work you could say:
    6·2 answers
  • A mirror forms an image because of which behavior of light?
    11·1 answer
  • How is earth outer layer different from a cracked hard-boiled egg?
    11·1 answer
  • Kenna has a mass of 30 kilograms. What's her weight in newtons? Assume that acceleration due to gravity is 9.8 N/kg.
    7·1 answer
  • Assume that the speed of light in a vacuum has the hypothetical value of 18.0 m/s. A car is moving at a constant speed of 14.0 m
    13·1 answer
  • Pentru a scoate apă dintr‑o fântână, Ionel folosește dispozitivul reprezentat în figura 3, în care d = 20 cm și ℓ = 40 cm. Gălea
    15·1 answer
  • What electromagnetic waves are used in these applications?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!