The temperature of a gas molecule is measured by the average translational kinetic energy
(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer:
The reason that it takes longer to get the water to boiling temperature than it is to cool it down again is because heating in the most simple sense is inefficient and will cause a lot if energy lost while cooling is to be turn's into quite a efficient process.
Explanation:
Answer:
i = 0.5 A
Explanation:
As we know that magnetic flux is given as

here we know that
N = number of turns
B = magnetic field
A = area of the loop
now we know that rate of change in magnetic flux will induce EMF in the coil
so we have

now plug in all values to find induced EMF


now by ohm's law we have

