Answer:
Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density
Lets take element mass at distance x
dm =λ dx
mass moment of inertia
So total moment of inertia
By putting the values
By integrating above we can find that
Now to find location of center mass
Now by integrating the above
So mass moment of inertia and location of center of mass
Answer:
Explanation:
We could use the following suvat equation:
where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m
And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:
where the negative sign means the direction is downward.
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.
deriiiiicccccckkkkkkkk mdddddds