I don't know for sure but i think that it is because the force him pushing her pushed him back as well
Hope i helped
Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer:
11.25 amps
Explanation:
For transformers, the magnetic flux

Therefore;

Ф = Фmax (cosωt) = 0.21·(cos(5·t))
From Faraday's law of induction, we have;
ε = -N × dΦ/dt
Which gives;
dΦ/dt = -1.05(sin (5t)
)
ε = -N × dΦ/dt = -50× -1.05(sin (5t)
)
ε = 52.5(sin (5t)
)
I = ε/R = 52.5(sin (5t)
)/3.3 = 15.9091(sin (5t)
) amps
The peak current is therefore = 15.9091 amps
The rms current = Peak current /√2 = 15.9091/(√2) = 11.25 amps.
The Speed In Kilometers per year is 63.072.
You didn't mention it, but the trumpeter herself has to be standing still.
<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat. (A)
Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.
Person D, the one standing still the whole time, hears the B-flat.</span>