If you include the effects of falling through air, then you have to know the
shape, size, weight, and surface texture of the objects. You also have to
know the height from which they're dropped, and the temperature, pressure,
and humidity of the air. All these things make a difference in how they fall.
If you ignore the effects of falling through air, like build a giant metal tank
and pump all the air out of it, and ONLY talk about the effects of gravity, then
ALL OBJECTS accelerate at the same rate. If you drop two things from the
same height at the same time, then they both hit the ground at the same time,
traveling at the same speed, no matter what they are. They could be a piece of
tissue and a car !
There are several museums where they have a big glass pipe that you can
see through, and they pump the air out of the pipe and drop a feather and a
bowling ball from the top inside at the same time, and they both reach the
bottom together.
If gravity is the only force on an object, then all objects fall at the same rate.
Answer:
Maximum weight that can be lifted = 18,000 N
Explanation:
Given:
Cross-sectional area of input (A1) = 0.004 m²
Cross-sectional area of the output (A2) = 1.2 m
²
Force (F) = 60 N
Computation:
Pressure on input piston (P1) = F / A1
Assume,
Maximum weight lifted by piston = W
Pressure on output piston (P2) = W / A2
We, know that
P1 = P2
[F / A1] = [W / A2]
[60 / 0.004] = [W / 1.2]
150,00 = W / 1.2
Weight = 18,000 N
Maximum weight that can be lifted = 18,000 N
Answer:
The speed of other projectile is 
Explanation:
Range of projectile is given by the equation

Here we have same range
Hence

V=IR
Potential Difference (v)= Current (A) * Resistance (Ω)
As V increases, R also increases.
Answer:
Projectile motion is the motion of an object thrown (projected) into the air. After the initial force that launches the object, it only experiences the force of gravity. The object is called a projectile, and its path is called its trajectory.
Explanation: