Answer:
this makes no since so i cant help you here sorry
Answer:
kg m/s
Explanation:
e = Charge = C
V = Voltage = 
c = Speed of light = m/s
Momentum is given by

The unit of MeV/c in SI fundamental units is kg m/s
An object moving in a circular path has centripetal acceleration. <em>(A)</em>
Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
Answer:
2156 J
Explanation:
From the question,
Work done = Combined mass of the bucket and water×height×gravity.
W = (M+m)hg............................. Equation 1
Where M = mass of water, m = mass of the bucket, h = height, g = acceleration due to gravity.
Given: M = 20 kg, m = 2 kg, h = 10 m
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = (20+2)×10×9.8
W = 22×98
W = 2156 J