Answer: The rate of change in the y coordinate is 75. 78 - 3= 75.
Answer:
y = 3(x+1)^2 - 4
Step-by-step explanation:The general form of the equation of a quadratic function whose vertex is (h,k) and whose leading coefficient is a is:
y - k = a(x-h)^2, or
y = a(x-h)^2 - k
Substituting the coefficients of the vertex (-1, -4), we get:
y = a(x + 1)^2 - 4
Substituting the coordinates of the given point, (1,8), we get:
8 = a(1+1)^2 - 4, which simplifies to:
8 = a(2)^2 - 4, or
8 = 4a - 4. Then 4a = 12, and a = 3.
Thus, the desired equation is y = 3(x+1)^2 - 4 (answer j).
Wouldnt it be 21 idk dont pay attention to me lol
q(x)= x 2 −6x+9 x 2 −8x+15 q, left parenthesis, x, right parenthesis, equals, start fraction, x, squared, minus, 8, x, plus, 1
AURORKA [14]
According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
<h3>What is the behavior of a functions close to one its vertical asymptotes?</h3>
Herein we know that the <em>rational</em> function is q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15), there are <em>vertical</em> asymptotes for values of x such that the denominator becomes zero. First, we factor both numerator and denominator of the equation to see <em>evitable</em> and <em>non-evitable</em> discontinuities:
q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15)
q(x) = [(x - 3)²] / [(x - 3) · (x - 5)]
q(x) = (x - 3) / (x - 5)
There are one <em>evitable</em> discontinuity and one <em>non-evitable</em> discontinuity. According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
To learn more on rational functions: brainly.com/question/27914791
#SPJ1
Answer:

Step-by-step explanation:
The general form of a quadratic polynomial is given by:
(1)
You have the following polynomial:
(2)
In order to complete the factorization you can use the quadratic formula, to obtain the roost of the polynomial. The quadratic formula is given by:
(3)
By comparing the equation (1) with the equation (2) you obtain:
a = 3
b = -10
c = 8
Then, you replace these values in the equation (3):

Then, the factorization of the polynomial is:
