I think you mean miosis because mitosis is cell reproduction, photosynthesis is to do with light, respiration is breathing and meiosis is division of cells
When ammonia is reacted with HCl it abstracts proton from acid and forms Ammonium Ion and Chloride Ion.
NH₃ + HCl → ⁺NH₄ + Cl⁻ (simply Written NH₄Cl)
Structure,
The structure of Ammonium Chloride is among those structures which contains all three types of bonding's, i.e.
Ionic Bond
Covalent Bond
Coordinate Covalent Bond
Three Hydrogen atoms previously bonded with Nitrogen are covalent in nature. The new incoming proton from HCl forms co-ordinate covalent bond with Nitrogen and Chloride Ion containing negative charge make Ionic Bond with the positive Ammonium Ion. In question, if the line between Nitrogen and Chlorine atom is assumed covalent then it is incorrect. Structure is shown below,
The energy release when dissolving 1 mol of NaOH in water is 445.1 kJ
the mass of NaOH to be dissolved is 32.0 g
The number of NaOH moles in 32.0 g - 32.0 g / 40 g/mol = 0.8 mol
the energy released whilst dissolving 1 mol of NaOH - 445.1 kJ
when dissolving 0.8 mol - the energy released is 445.1 kJ/mol x 0.8 mol
therefore heat released is - 356.08 kJ
answer is -356.08 kJ
<h3><u>Answer;</u></h3>
2, Blank, 2 ;
<h3><u>Explanation;</u></h3>
The balanced chemical equation would be;
2 CO + O2 → 2 CO2
Balancing a chemical equation ensures that the number of atoms of each element are equal on both the reactants side and the products side. This ensures that the law of conservation of mass is obeyed in chemical reactions.
Answer:
THE MASS OF NITROGEN GAS IN THIS CONDITIONS IS 0.0589 g
Explanation:
In an ideal condition
PV = nRT or PV = MRT/ MM where:
M = mass = unknown
MM =molar mass = 28 g/mol
P = pressure = 2 atm
V = volume = 25 mL = 0.025 L
R = gas constant = 0.082 L atm/mol K
T = temperature = 290 K
n = number of moles
The gas in the question is nitrogen gas
Molar mass of nitrogen gas = 14 * 2 = 28 g/mol
Then equating the variables and solving for M, we have
M = PV MM/ RT
M = 2 * 0.025 * 28 / 0.082 * 290
M = 1.4 / 23.78
M = 0.0589 g
The mass of the nitrogen gas at ideal conditions of 2 atm, 25 mL volume and 290 K temperature is 0.0589 g