Answer:
The boiling point of HF is <u><em>higher than</em></u> the boiling point of H2, and it is <u><em>higher than</em></u> the boiling point of F2.
Explanation:
In HF, inter- molecule forces will be present between the hydrogen and fluorine atoms. There will be hydrogen bonding present among the hydrogen and fluorine atoms. Hydrogen bonds are strong bonds and hence the boiling point for HF would be high as much energy will be required to break these bonds.
H2 and F2 will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Answer: The formula mass (formula weight) of a molecule is the sum of the atomic weights of the atoms in its empirical formula. The molecular mass (molecular weight) of a molecule is its average mass as calculated by adding together the atomic weights of the atoms in the molecular formula.
Hope this helps.... Stay safe and have a great weekend!!!!! :D
Glucose has empirical formula C6H12O6. So its formula mass can be calculated from that: 12.01x6 + 1.008x12 + 16.00x6 = 72.06 + 12.096 + 96.00 = 180.156 which needs to be rounded to two decimals to get 180.16 g/mole<span>.</span>
The answer is c this is the answer
Answer:
Statements Y and Z.
Explanation:
The Van der Waals equation is the next one:
(1)
The ideal gas law is the following:
(2)
<em>where n: is the moles of the gas, R: is the gas constant, T: is the temperature, P: is the measured pressure, V: is the volume of the container, and a and b: are measured constants for a specific gas. </em>
As we can see from equation (1), the Van der Waals equation introduces two terms that correct the P and the V of the ideal gas equation (2),<u> by the incorporation of the intermolecular interaction between the gases and the gases volume</u>. The term an²/V² corrects the P of the ideal gas equation since the measured pressure is decreased by the attraction forces between the gases. The term nb corrects the V of the ideal gas equation, <u>taking into account the volume occuppied by the gas in the total volume, which implies</u> a reduction of the total space available for the gas molecules.
So, the correct statements are the Y and Z: the non-zero volumes of the gas particles effectively decrease the amount of "empty space" between them and the molecular attractions between gas particles decrease the pressure exerted by the gas.
Have a nice day!