1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
5

2) The switch in the circuit below has been closed a long time. At t=0, it is opened.

Engineering
1 answer:
saul85 [17]3 years ago
8 0

Answer:

  il(t) = e^(-100t)

Explanation:

The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.

The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...

  il(t) = e^(-t/.01)

  il(t) = e^(-100t) . . . amperes

You might be interested in
A 0.91 m diameter corrugated metal pipe culvert (n = 0.024) has a length of 90 m and a slope of 0.0067. The entrance has a squar
NikAS [45]

Answer:

HW=1.71m

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

3 0
3 years ago
Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
Natali5045456 [20]

Answer:

A, D, F

Explanation:

took on edge.

8 0
3 years ago
Read 2 more answers
Steam enters a heavily insulated throttling valve at 11 MPa, 600°C and exits at 5.5 MPa. Determine the final temperature of the
7nadin3 [17]

Answer: the final temperature of the steam 581.5 °C

Explanation:

Given that;

P₁ = 11 MPa

T₁ = 600°C

exit at; P₂= 5.5 MPa

Now from superheated steam table( p=11 MPa, T=600°C)

h₁ = 3615 kJ/kg  

h₁ = h₂ ( by throttling process and adiabatic isentholpic )

from saturated steam table at; ( h= 3615 kJ/kg, P= 5.5 MPa )

Temperature = 581.5 °C

Therefore the final temperature of the steam 581.5 °C

8 0
3 years ago
A large well-mixed tank of unknown volume, open to the atmosphere initially, contains pure water. The initial height of the solu
trasher [3.6K]

Answer:

The exact time when the sample was taken is = 0.4167337 hr

Explanation:

The diagram of a sketch of the tank is shown on the first uploaded image

Let A denote the  first inlet

Let B denote the second inlet

Let C denote the single outflow from the tank

From the question we are given that the diameter of A is = 1 cm = 0.01 m

                              Area of  A is  = \frac{\pi}{4}(0.01)^{2} m^{2}

                                                    = 7.85 *10^{-5}m^{2}

Velocity of liquid through A = 0.2 m/s

  The rate at which the liquid would flow through the first inlet in terms of volume  = \frac{Volume of Inlet }{time} = Velocity * Area i.e is m^{2} * \frac{m}{s}   = \frac{m^{3}}{s}

             = 0.2 *7.85*10^{-5} \frac{m^{3}}{s}

  The rate at which the liquid would flow through the first inlet in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              =  1039.8 * 0.2 * 7.85 *10^{-5} Kg/s

                              = 0.016324 \frac{Kg}{s}

From the question the diameter of B = 2 cm = 0.02 m

                                           Area of B = \frac{\pi}{4} * (0.02)^{2} m^{2} = 3.14 * 10^{-4}m^{2}

                                     Velocity of liquid through B = 0.01 m/s

The rate at which the liquid would flow through the first inlet in terms of volume  = \frac{Volume of Inlet }{time} = Velocity * Area i.e is m^{2} * \frac{m}{s}   = \frac{m^{3}}{s}

             = 3.14*10^{-4} *0.01 \frac{m^{3}}{s}

The rate at which the liquid would flow through the second inlet in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              = 1053 * 3.14*10^{-6} \frac{Kg}{s}

                              = 0.00330642 \frac{Kg}{s}

From the question The flow rate in term of volume of the outflow at the time of measurement is given as  = 0.5 L/s

And also from the question the mass of  potassium chloride  at the time of measurement is given as 13 g/L

So The rate at which the liquid would flow through the outflow in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              = 13\frac{g}{L} * 0.5 \frac{L}{s}

                              =  \frac{6.5}{1000}\frac{Kg}{s}       Note (1 Kg = 1000 g)

                              = 0.0065 kg/s

Considering potassium chloride

         Let denote the  rate at which liquid flows in terms of mass as   as \frac{dm}{dt} i.e change in mass with respect to time hence

           Input(in terms of mass flow ) - output(in terms of mass flow ) = Accumulation in the Tank(in terms of mass flow )

         

      (0.016324 + 0.00330642) - 0.0065 = \frac{dm}{dt}

          \int\limits {\frac{dm}{dt} } \, dx  =\int\limits {0.01313122} \, dx

      => 0.01313122 t = (m - m_{o})

  From the question  (m - m_{o})  is given as = 19.7 Kg

Hence the time when the sample was taken is given as

               0.01313122 t = 19.7 Kg

      =>  t = 1500.2414 sec

            t = .4167337 hours (1 hour = 3600 seconds)

5 0
3 years ago
A capillary tube is immersed vertically in a water container. Knowing that water starts to evaporate when the pressure drops bel
REY [17]

Answer: 10.12m, 20micro meter

Explanation:

8 0
3 years ago
Other questions:
  • Which of the following does NOT describe product design.
    11·1 answer
  • When will the entropy value of the universe attained its maximum value?
    13·1 answer
  • In designing a fixed-incline self-acting thrust pad when the width of the pad is much larger than the length, it is of interest
    10·1 answer
  • An aggregate blend is composed of 65% coarse aggregate by weight (Sp. Cr. 2.635), 36% fine aggregate (Sp. Gr. 2.710), and 5% fil
    5·1 answer
  • Name the main classes of polymer and define their characteristic properties
    15·1 answer
  • Ask a question about your assignment
    8·2 answers
  • A. A compound gear train is composed of four gears: E,F,G,H. Gear E has 15 teeth and is meshed with gear F. Gear F has 25 teeth
    11·1 answer
  • ⚠️I mark BRIANLIST ⚠️The same engineering teams are able to design and develop the different subsystems for an airplane.
    5·2 answers
  • Hey any one ride dirtbikes here
    5·2 answers
  • Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!