Answer:
Explanation:
For an electric force, F the formula:
F = kQq/r^2
Given:
r2 = 1/2 × r1
F1 × r1 = k
F1 × r1 = F2 × r2
F2 = (F1 × r1^2)/(0.5 × r1)^2
= (F1 × r1^2)/0.25r1^2
= 4 × F1.
Answer: 0.61 s
Explanation:
Given
Mass of object, m = 0.015 kg
Radius of object, r = 0.055 m
Acceleration of object, g = 9.8 m/s²
In a pendulum,
T = 2π * √[I /(mgd)]
The moment of Inertia, I of a hollow sphere is given by
I(sphere) = 2/3MR² + MR²
I(sphere) = 5/3MR²
Also, d = R
Substituting these into the first equation, we have
T = 2π * √[(5/3MR²) / (mgr)]
T = 2π * √[(5/3r) / (g)]
T = 2 * 3.142 * √(5/3 * 0.055) / (9.8)]
T = 6.284 * √(0.092/9.8)
T = 6.284 * √0.00939
T = 6.284 * 0.097
T = 0.6095 s
To 2 significant figures,
The period is 0.61 s
Answer:
Explanation:
First of all we shall calculate the velocity of composite mass . Let it be v . Applying law of conservation of momentum
mu - MU = ( m + M ) v
v = mu - MU / ( m + M )
loss of kinetic energy
= 1/ 2 mu² + 1/2 MU² - 1/2 ( M +m ) v²
= 1/ 2 mu² + 1/2 MU² - 1/2 ( M +m ) (mu - MU)² / ( m + M )²
= 1/ 2 mu² + 1/2 MU² - 1/2 (mu - MU)² / ( m + M )
= 1/2 [ m²u² + mMu² +mMU² + m²U² - m²u² - M²U² - 2 muMU ] / ( m + M )
= 1 / 2 [ mMu² + mMU² - 2 muMU ] / ( m + M )
= 1 / 2mM [ (u² + U² - 2 uU) / ( m + M )]
= 1/2 mM x k
where
k = [ (u² + U² - 2 uU) / ( m + M )]
Given
m = .004 kg
M = 4 kg
u = 890 ms⁻¹
U = 7 ms⁻¹
k = ( 890² + 7² - 2 x 890 x 7 ) / 4.004
= ( 792100 + 49 - 12460 ) / 4.004
= 194727.52
loss of kinetic energy
= 1/2 mM x k
= .5 x .004 x 4 x 194727.52
= 1557.82 J .
No one is entirely sure of where the universe came from. Scientists have come up with several different theories relating to your question, including the Big Bang Theory, but there is no definite answer.