The function does residual Co2 plays big part and in
maintaining the body’s homeostasis. The addition of respiratory to reserve
volume or residual volume. The lung is
the one that who protect the organs, so in exchange of oxygen and carbon
dioxide.
Answer:
D is correct
Explanation:
because
we know that
density of lead is 11.36 g/cm3
and
density of tin is 7.31 g/cm3
so..
density of alloy by mixing 50/50
=(11.36+7.31)/2 g/cm3
=18.67/2 g/cm3
=9.33 g/cm3
Answer:
Check the explanation
Explanation:
When,
pH = -log[H+] = 3.30
[H+] = 

![alpha[Y^-4] = [H+]^6 + Ka1[H+]^5 + Ka1Ka2[H+]^4 + Ka1Ka2Ka3[H+]^3 + Ka1Ka2Ka3Ka4[H+]^2 + Ka1Ka2Ka3Ka4Ka5[H+] + Ka1Ka2Ka3Ka4Ka5Ka6](https://tex.z-dn.net/?f=alpha%5BY%5E-4%5D%20%3D%20%5BH%2B%5D%5E6%20%2B%20Ka1%5BH%2B%5D%5E5%20%2B%20Ka1Ka2%5BH%2B%5D%5E4%20%2B%20Ka1Ka2Ka3%5BH%2B%5D%5E3%20%2B%20Ka1Ka2Ka3Ka4%5BH%2B%5D%5E2%20%2B%20Ka1Ka2Ka3Ka4Ka5%5BH%2B%5D%20%2B%20Ka1Ka2Ka3Ka4Ka5Ka6)
= 
= 
When,
pH = -log[H+] = 10.15
[H+] = 
Ka1 = 1 ; Ka2 = 0.0316 ; Ka3 = 0.01 ; Ka4 = 0.002 ; Ka5 =
; Ka6 = 
= 
= 
Answer:
The answer is given below.
Explanation:
We will consider the acid as HA and will set up an ICE table with the equilibrium dissociation of α.
AT pH 2.4 the initial H+ concentration will be 3.98^10-3 M
HA → H+ + A-
Initial concentration: 0.1 → 3.98 ^10-3 + 0
equilibrium concentration: 0.1(1-α) → 3.98 * 10-3 + 0.1α 0.1α
pKa of chloroacetic acid is 2.9
-log(Ka) = 2.9
Ka = 1.26 * 10-3
From the equation, Ka = [H+] * [A-] / [HA]
1.26 * 10-3 = (3.98 * 10-3 + 0.1α )* 0.1α / 0.1(1-α)
Since α<<1, we assume 1-α = 1
Solving the equation, we have: α = 0.094
Since this is the fraction of acid that has dissociated, we can say that % of base form = 100 * α= 9.4%
<u>Answer:</u> The amount of CO that is occupied in the room is 
<u>Explanation:</u>
We are given:
Concentration of CO =
by volume
This means that
of CO is present in 1 L of blood
To calculate the volume of cuboid, we use the equation:

where,
V = volume of cuboid
l = length of cuboid = 10.99 m
b = breadth of cuboid = 18.97 m
h = height of cuboid = 11.89 m

Converting this into liters, by using conversion factor:

So, 
Applying unitary method:
In 1 L of blood, the amount of CO present is 
So, in
of blood, the amount of CO present will be = 
Hence, the amount of CO that is occupied in the room is 