Answer: 11,000 J
Explanation:
In an isothermal process,

(1)
Note that, the energy used in heat transfer is not available for work. So, the amount of energy unavailable for work is equal to the energy used in heat transfer.
To obtain the amount of energy in heat transfer, we multiply both sides of equation (1) by the denominator of the right side of (1) so that
amount of energy in heat transfer = (entropy increase)(temperature)
= (25 J/K)(440 K)
= 11,000 J
Since the amount of energy unavailable for work is equal to the amount of energy in the heat transfer, therefore the amount of energy unavailable for work is 11,000 J.
The kinetic energy of an object is directly proportional to its mass, and to the square of its velocity.
Answer:
a. Object A
Explanation:
The mass of an object implies the quantity of matter in it, while the weight is the amount of gravitational force applied on an object.
The object A has a mass of 25 lbs, but object B on the earth has a weight, W, of 25 N.
So that,
For object A on the moon, mass = 25 lbs
For object B on the earth, W = 25 N,
W = m x g
25 = m x 10 (g = 10 m/
)
m = 
= 2.5 lbs
Mass of object B is 2.5 lbs.
Therefore, the mass of the object A is more than that of B.
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />