Answer:
v = 20.31 m/s
Explanation:
p = mv -> v = p/m = 32,500 kg*m/s / 1,600 kg = 20.31 m/s
At the same time, however, you get less detail or less precision in a chart or graph than you do in the table. Imagine the difference between a table of sales figures for a ten-year period and a line graph for that same data. You get a better sense of the overall trend in the graph but not the precise dollar amount.
Answer:
stress tension tensile strength
Explanation:
The maximum stress which a material can withstand when it is pulled apart is its: stress tension tensile strength.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
Answer:
B. 17,705.1 J
Explanation:
The hear released when the mercury condenses into a liquid is given by:

where
m = 0.06 kg is the mass of the mercury
is the latent heat of vaporization
For mercury, the latent heat of vaporization is
, so the heat released during the process is:

So, the closest option is
B. 17,705.1 J