Answer:
#See solution for details.
Explanation:
1.
Tools:
.
:Calculate the speed of the wave using the time,
it takes to travel along the rope. Rope's length,
is measured using the meter stick.
-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.
-Speed of the pulse can then be obtained as:

: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

-Use the measuring stick and measuring scale to determine
values of the rope then obtain
.
-Use the force measuring constant to determine
. These values can the be substituted in
to obtain 
Answer:
Accuracy is how close a measured value is to an accepted value. <u>Precision is how close measurements are to one another.</u> To make measurements, you have to evaluate both the accuracy and the precision to get a correct value.
Water pollution can affect the economy because with no clean water, people will be forced to buy water bottles impacting their disposable income. In the search for clean water, potential future conflicts may occur because water is a fundamental need to human survival. :)
Answer:
In the analytical method,
- Resolve the vectors into the perpendicular components of the Cartesian coordinates.
- Calculate the magnitude of the resultant vector using the Pythagoras theorem.
Explanation:
- There are two methods to find the magnitude of the resultant vector.
- One is the geometrical method and the other one is the analytical method.
- In the geometrical method, all the vectors are connected the head to tail with the appropriate magnitude and the resultant vector is obtained by joining the initial point and the final point by a vector in the reverse direction. The magnitude of the resultant vector is given by the length of the line.
- In the analytical method, all the vectors are resolved into the perpendicular components.
- Using Pythagoras theorem, the magnitude of the resultant vector can be obtained
- If A and B are the two vectors forming an angle ∅ between them, then the magnitude of the resultant vector is given by the formula

Answer:
-5m/s
Explanation:
Since
acceleration=final velocity-initial velocity/time
2.5m/s^2=20m/s- initial velocity/10s
2.5m/s^2×10s= 20m/s -initial velocity
25m/s=20m/s - initial velocity
Initial velocity=20m/s-25m/s
= -5m/s