Answer:
Dude im not 100% sure but I think its b and c im sorry if im wrong its just that im not really sure which ones are.
Explanation:
Answer:
48%
Explanation:
Based on Gay-Lussac's law, the pressure is directly proportional to the temperature. To solve this question we must assume the temperature increases and all CO2 remains without reaction. The equation is:
P1T2 = P2T1
<em>Where Pis pressure and T absolute temperature of 1, initial state and 2, final state of the gas:</em>
P1 = 10.0atm
T2 = 1420K
P2 = ?
T1 = 730K
P2 = 10.0atm*1420K / 730K
P2 = 19.45 atm
The CO2 reacts as follows:
2CO2 → 2CO+ O2
Where 2 moles of gas react producing 3 moles of gas
Assuming the 100% of CO2 react, the pressure will be:
19.45atm * (3mol / 2mol) = 29.175atm
As the pressure rises just to 24.1atm the moles that react are:
24.1atm * (2mol / 19.45atm) = 2.48 moles of gas are present
The increase in moles is of 0.48 moles, a 100% express an increase of 1mol. The mole percent that descomposes is:
0.48mol / 1mol * 100 = 48%
Answer:
A
Explanation:
Increasing the the temperature would favour the endothermic reaction which is the forward direction however increasing the pressure would make the reaction try to counteract this change by favouring the reaction that would create more products so the equilibrium will shift left instead of right.
Hope this helps.
Answer:
See below
Explanation:
It is neither, at least not at room temperature.
Citric acid exists as a power at room temperature, but can be crystallized from cold water. This can be considered it's " solid state, " but as I mentioned before this acid is a powder. Take a look at the attachment below. This is a citric acid present as a crystal;
Answer:
<span>Chlorine (Cl) is the oxidizing agent because it gains an electron.
Explanation:
Reaction is as follow,
</span><span> Cl</span>₂<span> (aq) + 2 Br</span>⁻<span> (aq) </span>→ <span> 2Cl(aq) + Br</span>₂ <span>(aq)
Oxidation Reaction:
2 Br</span>⁻ → Br₂ + 2 e⁻
Two atoms of Br⁻ (Bromide) looses two electrons to form Br₂ molecule. Hence it is oxidized and is acting as reducing agent.
Reduction Reaction:
Cl₂ + 2 e⁻ → 2 Cl⁻
One molecule of Cl₂ gains two electrons to form two chloride ions (Cl⁻). Therefore, it is reduced and has oxidized Br⁻, Hence, acting as a oxidizing agent.