The correct answer is
B. it would move in a line tangent to the circular path
In fact, the centripetal force is the only force that keeps the object in a circular trajectory, pulling the object towards the centre of the circle. When this force is removed, there are no other forces acting on the object, therefore for the law of inertia, the object will continue to move at constant velocity, therefore in the same direction (tangent to the circular path) at constant speed.
The final velocity of the rock before it touches the ground is 28 m/s.
Answer:
Explanation:
As the rock is thrown down, this means the acceleration due to gravity will be exerting on the rock. So the rock will be exhibiting a free fall motion. Thus, the acceleration of the rock will be equal to the magnitude of acceleration due to gravity. Then using the third equation of motion, we can determine the final velocity of the rock provided the values for initial velocity, displacement and acceleration is given in the problem itself.
So the acceleration is equal to 9.8 m/s² due to its free fall motion and displacement will be equal to the height of the tower which is given as 30 m. And the initial speed of the rock is stated as 14 m/s. The initial speed is represented as u, final speed is represented as v, displacement is represented as s and acceleration is represented as a.

Then, 2 × 9.8 × 30 = v²-(14)²
v²=784
v= 28 m/s
So the final velocity of the rock before it touches the ground is 28 m/s.
Answer:
Ampere
Explanation:
The ampere is the unit of measurement in the international system. Its equal to a coulomb/second. It can be describe as the rate of charges flowing throught a conductor
The answer to your question is A.