The lower the frequncy the longer the wavelength the longer the wavelength whoch would probably give you more energy.
if im incorrect im truly sorry
Answer:
The answer to your question is an acid base reaction
Explanation:
A single replacement reaction is a reaction in which one metal replaces the cation of a compound. The reaction of this problem is not of this type because here the reactants are compounds no single elements.
A decomposition reaction is a reaction in which one compound decomposes into two or more products. This is not the answer to this question because in this reaction there are two reactants not only one.
A synthesis reaction is a reaction in which two reactants form only one product. The reaction of this problem is not of this type because there are two products not only one.
An acid-base reaction is a kind of double replacement reaction. In some acid-base reactions, there is an interchange of cations and anions like is shown in this reaction.
Answer is: it takes 116,8 seconds to fall to one-sixteenth of its initial value
<span>
The half-life for the chemical reaction is 29,2 s and is
independent of initial concentration.
c</span>₀
- initial concentration the reactant.
c - concentration of the reactant remaining
at time.
t = 29,2 s.<span>
First calculate the rate constant k:
k = 0,693 ÷ t = 0,693 ÷ 29,2 s</span> = 0,0237 1/s.<span>
ln(c/c</span>₀) = -k·t₁.<span>
ln(1/16 </span>÷ 1) = -0,0237 1/s ·
t₁.
t₁ = 116,8 s.
Answer:
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g)
Explanation:
Which ONE of the following is an oxidation–reduction reaction?
A) PbCO₃(s) + 2 HNO₃(aq) ⇒ Pb(NO₃)₂(aq) + CO₂(g) + H₂O(l). NO. All the elements keep the same oxidation numbers.
B) Na₂O(s) + H₂O(l) ⇒ 2 NaOH(aq). NO. All the elements keep the same oxidation numbers.
C) SO₃(g) + H₂O(l) ⇒ H₂SO₄(aq). NO. All the elements keep the same oxidation numbers.
D) CO₂(g) + H₂O(l) ⇒ H₂CO₃(aq). NO. All the elements keep the same oxidation numbers.
E) C₂H₄(g) + H₂(g) ⇒ C₂H₆(g). YES. <u>C is reduced</u> and <u>H is oxidized</u>.