Single and Double Replacement reactions are exactly as they sound - they “replace” one or two components, depending on the type, with something else obtained in the reaction.
1. This is a double replacement reaction - see that the SO4 and the OH groups are trading what they’re paired with? OH starts paired with Aluminum, and ends up paired to the Hydrogen, and the SO4 starts with the Hydrogen, but ends up with the Aluminum. Two things being replaced - a double replacement reaction.
2. This is a single replacement reaction - Iron replaces the Hydrogen through the reaction, leaving the Hydrogen inbound afterwards; one thing being replaced - a single replacement reaction.
3. Like 1, this is a double replacement reaction - Fluorine and Oxygen trade partners. Two things being replaced - a double replacement reaction.
Number 4 isn’t complete, and I’m not sure about the goal of the practice problems, so I hope this helps enough to finish the work!
Answer:
5. The valence electrons of both fluorine and carbon are found at about the same distance from their respective nuclei but the greater positive charge of the fluorine nucleus attracts its valence electrons more strongly.
Explanation:
Both fluorine and carbon are located in the second period of the periodic table, it means that they have 2 shells, so the valence electrons are found at about the same distance from their respective nuclei.
But fluorine has a higher atomic number, 9, than the carbon, 6. The atomic number represents how many protons there are in the nucleus, then there are more protons (positive charge) at the fluorine nucleus, and because of that, the attraction force between the nucleus and the valence electron is stronger in fluorine.
If the force is stronger, it will be necessary more energy to break the bond, so it will be harder to remove an electron from fluorine than from carbon.
I’m just letting you know this is really easy you just calculate the molar mass of each compound and divide the amount of the compound (grams) by the molecular Mass
Answer: C. Light can cause electrons to be released from the surface of a metal
Explanation:
I believe its G because it has the same amount of particles. (I haven't had much background)