It's 'D'. You need to know the time in order to calculate power.
Answer:
1768 N
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have a car of mass
m = 884 kg
And its acceleration is

Substituting into the equation, we find the net force on the car:

Answer:
Part (a) The magnitude of the deflection of electron beam on the screen due to the Earth's gravitational field is 5.97*
m.
Part (b) The magnitude of the deflection of electron beam on the screen due to the vertical component of the Earth's magnetic field is
m
The question is incomplete. You dis not provide values for A and B. Here is the complete question
Light in the air is incident at an angle to a surface of (12.0 + A) degrees on a piece of glass with an index of refraction of (1.10 + (B/100)). What is the angle between the surface and the light ray once in the glass? Give your answer in degrees and rounded to three significant figures.
A = 12
B = 18
Answer:
18.5⁰
Explanation:
Angle of incidence i = 12.0 + A
A = 12
= 12.0 + 12
= 14
Refractive index u = 1.10 + B/100
= 1.10 + 18/100
= 1.10 + 0.18
= 1.28
We then find the angle of refraction index u
u = sine i / sin r
u = sine24/sinr
1.28 = sine 24 / sine r
1.28Sine r = sin24
1.28 sine r = 0.4067
Sine r = 0.4067/1.28
r = sine^-1(0.317)
r = 18.481
= 18.5⁰
Since the total distance for all three of the planets is 196.2 million miles, you would add planet i and planet iii, then subtract that number from 196.2
planet i and planet iii equaled 54.9 million miles, that subtracted from 196.2 equals 141.3
So your answer is 141.3 million miles