Answer: petroleum
because it is a fossil fuel like coal, and natural gas.
I think the answer is a and c
I
Helium is a chemical element of the atomic number 2, an inert gas that is the lightest member of the noble gas series.
These means, Helium is lighter than air, and for this is why all other balloons may not float.
The helium balloon displaces an amount of air (Just like an empty water bottle displaces an amount of water). As long as the weight of the helium plus the balloon fabric is lighter than the air displaces, the balloon will float in the air.
The question is incomplete, complete question is :
In an organic structure, you can classify each of the carbons as follows: Primary carbon (1°) = carbon bonded to just 1 other carbon group Secondary carbon (2°) = carbon bonded to 2 other carbon groups Tertiary carbon (3°) = carbon bonded to 3 other carbon groups Quaternary carbon (4°) = carbon bonded to 4 other carbon groups How many carbons of each classification are in the structure below? How many total carbons are in the structure? How many primary carbons are in the structure? How many secondary carbons are in the structure? How many tertiary carbons are in the structure? How many quaternary carbons are in the structure?
Structure is given in an image?
Answer:
There are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Explanation:
Total numbers of carbon = 10
Number of primary carbons that is carbon joined to just single carbon atom = 6
Number of secondary carbons that is carbon joined to two carbon atoms = 1
Number of tertiary carbons that is carbon joined to three carbon atoms = 2
Number of quartenary carbons that is carbon joined to four carbon atoms = 1
So, there are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
According to this formula:
Q = M*C*ΔT
when we have M ( the mass of water) = 200 g
and C ( specific heat capacity ) of water = 4.18 J/gC
ΔT (the difference in temperature) = Tf - Ti
= 100 - 24
= 76°C
So by substitution:
Q = 200 g * 4.18 J/gC * 76 °C
= 63536 J
∴ the amount of heat which be added and absorbed to raise the temp from 24°C to 100°C is = 63536 J