Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
The answer is 36 kilometers per hour, or 10 meters per second.
Answer:
a=0.212 m/s²
Explanation:
Given that
q= 10⁻⁹ C
m = 5 x 10⁻⁹ kg
Magnetic filed ,B= 0.003 T
Speed ,V= 500 m/s
θ= 45°
Lets take acceleration of the mass is a m/s²
The force on the charge due to magnetic filed B
F= q V B sinθ
Also F= m a ( from Newton's law)
By balancing these above two forces
m a= q V B sinθ



a=0.212 m/s²
Answer:We are usually not aware of the electric force acting between two everyday objects because most everyday objects have as many plus charges as minus charges. Option A
Explanation:An electric force is exerted between any two charged objects( either positive or negative). Objects with the same charge will repel each other, and objects with opposite charge will attract each other. The strength of the electric force between any two charged objects depends on the amount of charge that each object contains and on the distance between the two charges. Electric charges are generated all around us due to different surfaces bearing different types of charges. We are usually not aware of it because the quantity of positive charges equals the number of negative charges.