Answer:
The 10 rules of badminton are as follows:
1. A game starts with a coin toss. Whoever wins the toss gets to decide whether they would serve or receive first OR what side of the court they want to be on. The side losing the toss shall then exercise the remaining choice.
2. At no time during the game should the player touch the net, with his racquet or his body.
3. The shuttlecock should not be carried on or come to rest on the racquet.
4. A player should not reach over the net to hit the shuttlecock.
5. A serve must carry cross court (diagonally) to be valid.
6. During the serve, a player should not touch any of the lines of the court, until the server strikes the shuttlecock. During the serve the shuttlecock should always be hit from below the waist.
7. A point is added to a player's score as and when he wins a rally.
8. A player wins a rally when he strikes the shuttlecock and it touches the floor of the opponent's side of the court or when the opponent commits a fault. The most common type of fault is when a player fails to hit the shuttlecock over the net or it lands outside the boundary of the court.
9. Each side can strike the shuttlecock only once before it passes over the net. Once hit, a player can't strike the shuttlecock in a new movement or shot.
10. The shuttlecock hitting the ceiling, is counted as a fault.
Explanation:
Answer:
v₁ = 37.5 cm / s
Explanation:
For this exercise we can use that angular and linear velocity are related
v = w r
in the case of the spool the angular velocity for the whole system is constant,
They indicate the linear velocity v₀ = 25.0 cm / s for a radius of r₀ = 1.00 cm,
w = v₀ /r₀
for the outside of the spool r₁ = 1.5 cm
w = v₁ / r₁1
since the angular velocity is the same we set the two expressions equal
v1 =
let's calculate
v₁ =
v₁ = 37.5 cm / s
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
Answer:60 gm
Explanation:
Given
initial velocity of ball 
Force exerted by racquet 
time period of force 
final velocity of ball 
Racquet imparts an impulse to the ball which is given by


