Answer:
in H2So4 splits in 2 H+ and a
so42 -particle=3particle per mole.So2
moles H2So4 will result in 3*2=6moles
of molecules.
Oxygen gains two electrons when it bonds to form a complete outer shell and magnesium loses two electrons when bonding to gain its full outer shell.
As electrons are negative, the oxygen (which gains electrons) will become negative and the magnesium (which loses electrons) will become positive.
The negative and positive ions will then attract to one another due to the magnetic pull of the positive and negative.
"The other halogens are not as electronegative and so other hydrogen halides cannot form hydrogen bonds between molecules. Only London Forces are formed. - Therefore more energy is required to break the intermolecular forces in HF than the other hydrogen halides and so it has a higher boiling point."
not a hack link, just stating where i got your answer from! -
https://www.mytutor.co.uk/answers/17558/A-Level/Chemistry/Explain-the-unusually-high-boiling-point-of-HF/
Answer:
<h2>93.02 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>93.02 moles</h3>
Hope this helps you
Nitrogen fixation is the process that makes atmospheric nitrogen available to plants by mutualistic and free-living bacteria. The process is undertaken by the rhizobium bacteria that live in root roots of plants such as legumes. The mutualistic relationship is that the plant supplies the bacteria with a habitat in which to live, water, and nutrients, and the bacteria supply nitrogen for making plant proteins.