Pressure on the inside of the balloon was greater than the pressure on the outside of the balloon so it pushed out until the pressures equalized.
Answer:
d. 12.3 grams of Al2O3
Explanation:
The balanced chemical equation of this chemical reaction is as follows:
4Al + 3O2 --> 2Al2O3
Based on the balanced equation, 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
First, we need to convert the mass of aluminum to moles using the formula;
mole = mass/molar mass
Molar mass of Al = 27g/mol
mole = 6.50/27
= 0.241mol of Al.
Hence, if 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
Then, 0.241mol of Al will produce (0.241 × 2/4) = 0.241/2 = 0.121mol of Al2O3.
Convert this mole value to molar mass using mole = mass/molar mass
Molar mass of Al2O3 = 27(2) + 16(3)
= 54 + 48
= 102g/mol
mass = molar mass × mole
mass = 102 × 0.121
mass of Al2O3 = 12.34grams.
I’m a monkey and so are you I will shove my pp in you
Answer:
The answer to the question is;
The number of ATP molecules the cell synthesize for each molecule of pyruvate oxidized to carbon dioxide and water is 14 ATP molecules.
Explanation:
The chemical reaction for glycolysis is
Glucose + 2 NAD⁺ + 2 Pi + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H⁺ + 2 H₂O + heat
As seen above, each glucose molecule produces 2 pyruvate molecules and 2 ATP. Therefore, if the cell can produce 30 ATP per glucose molecule then, since 2 ATP are already produced directly by the glycolysis of glucose, the remaining 28 ATP re produced from the two pyruvate molecules
Therefore, the number of ATP molecules the cell can synthesize for each pyruvate oxidized to carbon dioxide and water is 28/2 or 14 ATP.
Atomic number is less than 11