galaxy would be the correct answer to this question
Answer:
The statements are missing!
To solve this problem we will apply the concepts related to the kinematic equations of motion. We will start calculating the maximum height with the given speed, and once the total height of fall is obtained, we will proceed to calculate with the same formula and the new height, the speed of fall.
The expression to find the change in velocity and the height is,

Replacing,


Thus the total height reached by the ball is
H = 22m+13.0612m
H = 35.0612m
Now calculate the velocity while dropping down from the maximum height as follows

Substituting the new height,



Answer:
1g/cm3
Explanation:
volume of block is 3 cubed which is 27 cm3
we know density is m/v so d= 27g/27cm3
which is 1g/cm3
if my answer helps please mark as brainliest
Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm