1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paul [167]
3 years ago
11

Consider a very long, cylindrical fin. The temperature of the fin at the tip and base are 25 °C and 50 °C, respectively. The dia

meter of the fin is 3 cm. The thermal conductivity of the fin is 150 W/m·K. The heat transfer coefficient is 123 W/m2·K. Estimate the fin temperature in °C at a distance of 10 cm from the base
Engineering
1 answer:
nekit [7.7K]3 years ago
7 0

Answer:

98°C

Explanation:

Total surface area of cylindrical fin = πr² + 2πrl , r = 0.015m; l= 0.1m; π =22/7

22/7*(0.015)² + 22/7*0.015*0.1 = 7.07 X 10∧-4 + 47.1 X 10∧-4 = (54.17 X 10∧-4)m²

Temperature change, t = (50 - 25)°C = 25°C = 298K

Hence, Temperature =  150 X (54.17 X 10∧-4) X 298/123 = 242.14/124 = 2.00K =

∴ Temperature change = 2.00K

But temperature, T= (373 - 2)K = 371 K

In °C = (371 - 273)K = 98°C         

You might be interested in
Water enters a boiler at a temperature of 110°F. The boiler is to produce 2000 lb/hr of steam at a pressure of 130 psia. How man
strojnjashka [21]
Yes it does the answer is no
5 0
2 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
Sandwich materials typically use a high density core with non-structural cover plates. a)True b)- False
Lorico [155]

Answer: False

Explanation: Sandwich materials are usually in composite material form which has a fabrication of two thin layers which are stiff in nature and have  light weighing and thick core .The construction is based on the ratio that is of stiffness to the weight .Therefore, the density of the material in the core is not high and are only connected with the skin layer through adhesive .So the given statement is false that sandwich materials typically use a high density core with non- structural cover plates.

4 0
3 years ago
Water leaves a penstock (the flow path through a hydroelectric dam) at a velocity of 100 ft/s. How deep is the water behind the
Marysya12 [62]

Answer:

155fts

Explanation:

We apply the bernoulli's equation to get the depth of water.

We have the following information

P1 = pressure at top water surface = 0

V1 = velocity at too water surface = 0

X1 = height of water surface = h

Hf = friction loss = 0

P2 = pressure at exit = 0

V2 = velocity at exit if penstock = 100ft/s

X2 = height of penstock = 0

g = acceleration due to gravity = 32.2ft/s²

Applying these values to the equation

0 + 0 + h = 0 + v2²/2g +0 + 0

= h = 100²/2x32.2

= 10000/64.4

= 155.28ft

= 155

8 0
3 years ago
a metal coin has certain properties that can be measured.which property of a coin is different on the moon that is on earth?
Sloan [31]

Answer:

Coins weigh less on the Moon.

Explanation:

Gravity is only 1/6th as strong on the Moon than it is on Earth. Where a nickle is about 5 grams on Earth, it is less than 1 gram on the Moon. Gravity is affected by the size of the planet or moon. The Moon is much less massive than the Earth.

8 0
3 years ago
Other questions:
  • 8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
    7·1 answer
  • Describe a simple process
    11·1 answer
  • A closed system undergoes an adiabatic process during which the work transfer into the system is 12 kJ. The system then returns
    14·1 answer
  • Early American rockets used an RC circuit to set the time for the rocket to begin re-entry after launch (true story). Assume the
    5·1 answer
  • A wooden cylinder (0 02 x 0 02 x 0 1m) floats vertically in water with one-third of ts length immersed. a)-Determine the density
    7·1 answer
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/(s^2). Determine the acceleration of an object o
    10·1 answer
  • The formula for the cross sectional area of specimen at the middle is
    5·1 answer
  • the voltage across a 5mH inductor is 5[1-exp(-0.5t)]V. Calculate the current through the inductor and the energy stored in the i
    6·1 answer
  • An energy system can be approximated to simply show the interactions with its environment including cold air in and warm air out
    6·1 answer
  • Concrete ___ support and anchor the bottom of steel columns and wood post, which support beams that are pare of framing system o
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!