Answer:
The spring is compressed by 0.275 meters.
Explanation:
For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of weight of the piston and the force the spring exerts on the piston
Mathematically we can write

we know that


Now the force exerted by an spring compressed by a distance 'x' is given by 
Using the above quatities in the above relation we get

Answer:
Hydrostatic force = 41168 N
Explanation:
Complete question
A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water so that the top is 4 ft below the surface. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)
Let "x" be the side length submerged in water.
Then
w(x)/base = (4+3-x)/altitude
w(x)/5 = (4+3-x)/3
w(x) = 5* (7-x)/3
Hydrostatic force = 62.5 integration of x * 4 * (10-x)/3 with limits from 4 to 7
HF = integration of 40x - 4x^2/3
HF = 20x^2 - 4x^3/9 with limit 4 to 7
HF = (20*7^2 - 4*7^(3/9))- (20*4^2 - 4*4^(3/9))
HF = 658.69 N *62.5 = 41168 N
Don’t go on that file will give a virus! Sorry just looking out and I don’t know how to comment!
Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂


The heat supplied =
× Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied =
·
= 20 kg/s
The heat supplied = 20*
= 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K

T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust =
×
= 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.