Answer:
2Na(s) + 2HCl(aq) —> 2NaCl(aq) + H2(g)
Explanation:
Na(s) + HCl(aq) —> NaCl(aq) + H2(g)
Writing an ionic equation will actually help us to understand the equation and also to balance it. This is illustrated below:
Na + H+Cl-
Na is higher than H in the activity series and as such, it will displaces H from the solution and form NaCl with H2 liberated as shown below
Na + H+Cl- —> Na+Cl- + H2
Now, put 2 in front of Na, H+Cl- and Na+Cl- to balance the equation as shown below:
2Na + 2H+Cl- —> 2Na+Cl- + H2
Now we can write the elemental equation as follow:
2Na(s) + 2HCl(aq) —> 2NaCl(aq) + H2(g)
Answer:
"Urban area is used for the buildings, industries etc, whereas the rural areas are used for cultivation, forest cover etc."
Explanation:
When we talk about the urban land they are mostly covered with buildings, industries, roads and apartments and also the municipal structures. But when we talk about the rural land it has less dense population with forest cover, agricultural lands, rangeland and also different land cover type. In the urban areas the population density is very high. Those areas that located in the outskirt of the town are the rural areas.
Answer is: ammonia has a higher boiling point because it has stronger intermolecular forces.
Intermolecular forces<span> are the forces between </span><span>molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
</span>There are several types of intermolecular forces: hydrogen bonding, i<span>on-induced dipole forces, ion-dipole forces andvan der Waals forces.</span>
The reactant being used up is called limiting reagent as it limits the total amount of product produced.
if 4 units of HCL gives 2 units of Cl therefore
4:2
0.98:x
x=(0.98*2) /4
x=0.49L
When a system experiences a disturbance ( such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state.