<u>Answer:</u> The correct option is d) 460 kJ
<u>Explanation:</u>
We are given:
Content of fat in energy drink = 2.0 g
Content of protein in energy drink = 6.0 g
Content of carbohydrate in energy drink = 16.3 g
Also,
The fuel value of fat = 38 kJ/g
The fuel value of protein = 17 kJ/g
The fuel value of carbohydrate = 17 kJ/g
So, the fuel value of the energy drink will be:
Total fuel value = 
Total fuel value = ![[76+102+277]=460kJ](https://tex.z-dn.net/?f=%5B76%2B102%2B277%5D%3D460kJ)
Hence, the correct option is d) 460 kJ
t1/2 = ln 2 / λ = 0.693 / λ
Where t1/2 is the half life of the element and λ is decay constant.
32 = 0.693 / λ
λ = 0.693 / 32 (1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, λ is decay constant and t is the time taken.
t = 1.9 hours = 1.9 x 60 min
From (1) and (2),
Nt = Nο e⁻Λ(0.693/32)*1.9*60
Nt = 0.085Nο
Percentage = (Nt/Nο) x 100%
= (0.085Nο/Nο) x 100%
= 8.5%
Hence, Percentage of remaining atoms with the original sample is 8.5%
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, since the reaction taking place between sodium hydroxide and chlorine has is:

Which must be balanced according to the law of conservation of mass:

Whereas there is a 2:1 mole ratio of NaOH to Cl2, which means that the moles of the former that are consumed by 0.85 moles of the latter are:

Therefore, since we just have 1.23 moles out of 1.70 moles of NaOH, we infer this is the limiting reactant.
Regards!