Answer:
ΔH°rxn = -47 kJ
Explanation:
Using Hess´s law for the reaction:
3 Fe2O3(s) + CO(g) → 2 Fe3O4(s) + CO2(g) ,
the ΔH°rxn will be given by the expression:
ΔH°rxn kJ = 2ΔHºf(Fe3O4) + ΔHºf(CO2) - ( 3ΔHºf(Fe2O3) + ΔHºf(CO) )
= 2(-1118) + (-394) - ( 3( -824 ) + ( -111 ) )
= - 47 kJ
hey mate here is ur answer
solution
mass{m}=3 gram
=3/1000
volume{v}=16cm
=16/100
density=m/v
=3/1000÷16/100
=3/160
=0.01875kg/m3
Answer:A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance.
Explanation:
And yes I would love to talk
Answer:
A is the molecular formula for xylose because shows the actual number of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the molecular formula for xylose because shows the arrangement of atoms in the compound: Formula B is the structurab formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the empirical formula for xylose because it shows the actual number of atoms in the compound: Formula B is the molecular formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the structural formula for xylose because it shows the arrangement of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound.
<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.