Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ
Answer:
a ) 1.267 radian
b ) 1.084 10⁻³ mm
Explanation:
Distance of screen D = 1.65 m
Width of slit d = ?
Wave length of light λ = 687 nm.
Distance of second minimum fro centre y = 2.09 cm
Angle of diffraction = y / D
= 2.09 /1.65
= 1.267. radian
Angle of diffraction of second minimum
= 2 λ / d
so 2 λ / d = 1.267
d = 2 λ / 1.267 = (2 x 687 ) /1.267 nm
=1084.45 nm = 1.084 x 10⁻³ mm.
Answer: Resonance in sound is when one object is vibrating at the same frequency to the second object of forces to the second frequency.
Explanation:
"Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies)." wikipedia I hope this helps you!
From the planks equation
E=hv
V= c/ wave length
V= 3×10^8/30×10^-9
=1×10^16
E= hv
6.63×10^-34×1×10^16
= 6.63×10^-18