Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.
The horizontal and vertical components of a projectile's velocity are independent of each other.
Answer: Option C
<u>Explanation:</u>
The path of a projectile is determined by two components of motion. They are termed as horizontal and the vertical components. Since both components velocity are perpendicular to each other, so it can stated that they are independent of each other.
Even it can seen that when the horizontal components of velocity is constant, then there will be change in the vertical components of velocity leading to free fall projectile path.
And in the absence of gravity, there will be change in the horizontal components of velocity with zero vertical component of velocity. Thus, the horizontal and the vertical components of a projectile’s velocity are seemed to be independent of each other.
Answer: 2.5 m/s and 6.25 m
Explanation:
u = 0
a = 0.5 m/s²
t = 5 s
v = u + at
= 0 + 0.5 × 5
= <u>2.5 m/s</u>
s = ut + 1/2 at²
= 1/2 × 2.5 × 5
=<u> 6.25 m</u>
Explanation:
Given that,
Mass of the ball, m = 1.2 kg
Initial speed of the ball, u = 10 m/s
Height of the floor from ground, h = 32 m
(a) Let v is the final speed of the ball. It can be calculated using the conservation of energy as :



v = -25.04 m/s (negative as it rebounds)
The impulse acting on the ball is equal to the change in momentum. It can be calculated as :


J = -42.048 kg-m/s
(b) Time of contact, t = 0.02 s
Let F is the average force on the floor from by the ball. Impulse acting on an object is given by :



F = 0.8409 N
Hence, this is the required solution.
Unlike a longitudinal wave, a transverse wave moves about, perpendicular to the direction of propagation. The particles in a transverse wave do not travel along the direction of propagation, but only oscillate up and down on its equilibrium position. With this, the displacement can be determined by measuring (in the case of electronic waves, using an oscilloscope or spectrum analyzer) and setting the desired units to measure the wave in.