Answer:
0.78m (rounded to nearest hundredth of a meter)
explanation:
time taken for going up=time taken for drop down after reaching the highest point. at the highest point, the velocity becomes 0.
now all thats left is dropping an object from a height (h) and seeing how long it takes to reach the ground. then find out the flight’s total time divided by 2 (0.8/2=0.4)
lets say the velocity is v and the height she jumped to is h. we can make a kinematic expression:
s=vt+½gt²
once we put it all together you should get this:
h=0×0.4+½(9.81) 0.4²
.
∴
Time taken for downward drop
=
0.8
2
=
0.4
s
Suppose that she jumped with initial velocity
=
u
Also suppose that she jumped to a height
h
Using following kinematic expression
s
=
u
t
+
1
2
g
t
2
and inserting various quantities we get
h
=
0
×
0.4
+
1
2
(
9.81
)
0.4
2
h
=
0.78
m
rounded to nearest hundredth of a meter.
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
Net force I’m pretty sure
Answer: The domain that is aligned with the applied field will grow, while the domain that is oppositely aligned to the magnetic field will shrink, this is because permanent magnets produces their own magnetic field.