Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
It is wasted, most likely as light, in this case, or it is lost during the transport of electricity.
Volume of a block can be found by: length × width × height. So:
3.5cm × 2.8cm × 1.6cm = 15.68cm^3
The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1