Differentiate the given solution:

Substitute
and
into the ODE:

and it's easy to see the left side indeed reduces to 0.
(2 − 3i) + (x + yi) = 6
We add the left hand side
(2+x) + (-3+y)i = 6
6 can be written in a+ib
6 can be written as 6 + 0i
(2+x) + (-3+y)i = 6 +0i
Now we frame 2 equations
2 + x= 6
-3 + y =0
Solve the first equation
2 + x = 6
Subtract 2 from both sides
x = 4
solve the second equation
-3 + y =0
Add 3 on both sides
y= 3
So x+yi is 4+3i
Answer:
<h2>22</h2>
Step-by-step explanation:
<h3>Given, y = 3 </h3>
substitute this value in given expression
<em>=> 10y - 8</em>
<em>=</em><em>></em><em> </em><em>1</em><em>0</em><em>(</em><em>3</em><em>)</em><em> </em><em>-</em><em> </em><em>8</em><em> </em>
<em>=</em><em>></em><em> </em><em>3</em><em>0</em><em> </em><em>-</em><em> </em><em>8</em><em> </em>
<em>=</em><em>></em><em> </em><em>2</em><em>2</em><em>.</em><em>.</em><em>.</em><em>ans</em>
<h2>HOPE IT HELPS U!!!!</h2>
Cos m = .4685
cos^-1(.4685) = 62 degrees
angle L = 180-90-62 = 28 degrees
Given:
3n + 5
n = 1 ; 3(1) + 5 = 3 + 5 = 8
n = 2 ; 3(2) + 5 = 6 + 5 = 11
n = 3 ; 3(3) + 5 = 9 + 5 = 14
n = 4 ; 3(4) + 5 = 12 + 5 = 17
The first four terms of the sequence are: 8, 11, 14, 17. Second option.