Answer:
The value of an integer x in the hydrate is 10.
Explanation:

Molarity of the solution = 0.0366 M
Volume of the solution = 5.00 L
Moles of hydrated sodium carbonate = n


Mass of hydrated sodium carbonate = n= 52.2 g
Molar mass of hydrated sodium carbonate = 106 g/mol+x18 g/mol



Solving for x, we get:
x = 9.95 ≈ 10
The value of an integer x in the hydrate is 10.
Answer:
<h2>0.52 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
volume = final volume of water - initial volume of water
volume = 35 - 8 = 27 mL
We have

We have the final answer as
<h3>0.52 g/mL</h3>
Hope this helps you
Answer:
pH = 12.52
Explanation:
Given that,
The [H+] concentration is
.
We need to find its pH.
We know that, the definition of pH is as follows :
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Put all the values,
![pH=-log[3\times 10^{-13}]\\\\pH=12.52](https://tex.z-dn.net/?f=pH%3D-log%5B3%5Ctimes%2010%5E%7B-13%7D%5D%5C%5C%5C%5CpH%3D12.52)
So, the pH is 12.52.
Answer:
1.33 Å
Explanation:
Given that the edge length , a of the KCl which forms the FCC lattice = 6.28 Å
Also,
For the FCC lattice in which the anion-cation contact along the cell edge , the ratio of the radius of the cation to that of anion is 0.731.
Thus,
.................1
Also, the sum of the radius of the cation and the anion in FCC is equal to half of the edge length.
Thus,
...................2
Given that:

To find,

Using 1 and 2 , we get:

<u>Size of the potassium ion = 1.33 Å</u>