Hope you find this answer I need points
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
A persons weight changes as he travels from earth to space but his mass remains the same
Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.
the answer is c, more heat is being released.