Answer:
Both are different.
Explanation:
Both rocks are different from one another because both formed from different types of rocks. Rock A was formed from small pieces of rock while on the other hand, Rock B was formed from liquid rock so they both have different sources of rocks from which they were formed. Forming at the same time does not show that they are similar to each other, it is their source which decides that they are similar or different.
Answer is: mass of water is 56.28 grams.
Chemical reaction: 2H₂O → 2H₂ + O₂.
m(O₂) = 50.00 g.
n(O₂) = m(O₂) ÷ M(O₂).
n(O₂) = 50 g ÷ 32 g/mol.
n(O₂) = 1.5625 mol.
From chemical reaction: n(O₂) : n(H₂O) = 1 : 2.
n(H₂O) = 2 · 1.5625 mol.
n(H₂O) = 3.125 mol.
m(H₂O) = n(H₂O) · M(H₂O).
m(H₂O) = 3.125 mol · 18.01 g/mol.
m(H₂O) = 56.28 g.
2, 4, 1
Explanation:
We have the following chemical reaction:
Ag₂O → Ag + O₂
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
So the balanced chemical equation is:
2 Ag₂O → 4 Ag + O₂
Learn more about:
balancing chemical equations
brainly.com/question/14112113
brainly.com/question/14187530
#learnwithBrainly
The molar mass of B(NO₃)₃ - Boron nitrate : 196.822 g/mol
<h3>Further explanation</h3>
In stochiometry therein includes
<em>Relative atomic mass (Ar) and relative molecular mass / molar mass (M) </em>
So the molar mass of a compound is given by the sum of the relative atomic mass of Ar
M AxBy = (x.Ar A + y. Ar B)
The molar mass of B(NO₃)₃ - Boron nitrate :
M B(NO₃)₃ = Ar B + 3. Ar N + 9.Ar O
M B(NO₃)₃ = 10.811 + 3. 14,0067 + 9. 15,999
M B(NO₃)₃ = 196.822 g/mol
Empirical formula is the simplest way the molecular formula can be wrote so here 7 goes into all of these so it would be CH2O