Explanation:
It is given that, a long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire.
The charge per unit length of the wire is
and the net charge per unit length is
.
We know that there exist zero electric field inside the metal cylinder.
(a) Using Gauss's law to find the charge per unit length on the inner and outer surfaces of the cylinder. Let
are the charge per unit length on the inner and outer surfaces of the cylinder.
For inner surface,



For outer surface,



(b) Let E is the electric field outside the cylinder, a distance r from the axis. It is given by :


Hence, this is the required solution.
<h2><em>So there is two truths given. After an amount of time Ttotal (lets call it ‘t’):
</em></h2><h2><em>
</em></h2><h2><em>The car’s speed is 25m/s
</em></h2><h2><em>The distance travelled is 75m
</em></h2><h2><em>Then we have the formulas for speed and distance:
</em></h2><h2><em>
</em></h2><h2><em>v = a x t -> 25 = a x t
</em></h2><h2><em>s = 0.5 x a x t^2 -> 75 = 0.5 x a x t^2
</em></h2><h2><em>Now, we know that both acceleration and time equal for both truths. So we can say:
</em></h2><h2><em>
</em></h2><h2><em>t = 25 / a
</em></h2><h2><em>t^2 = 75 / (0.5 x a) = 150 / a
</em></h2><h2><em>Since we don’t want to use square root at 2) we go squared for 1):
</em></h2><h2><em>
</em></h2><h2><em>t^2 = (25 / a) ^2 = 625 / a^2
</em></h2><h2><em>t^2 = 150 / a
</em></h2><h2><em>Since t has the same value for both truths we can say:
</em></h2><h2><em>
</em></h2><h2><em>625 / a^2 = 150 / a
</em></h2><h2><em>
</em></h2><h2><em>Thus multiply both sides with a^2:
</em></h2><h2><em>
</em></h2><h2><em>625 = 150 x a, so a = 625 / 150 = 4.17
</em></h2><h2><em>
</em></h2><h2><em>We can now calculate t as well t = 25 * 150 / 625 = 6</em></h2>
Kinetic and static friction are both resistive forces
Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".


F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.