Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m
<span>The two factors that act on parachutes are gravity and air resistance, which is also called drag. Gravity acts as a force to pull parachutes down to the surface of the Earth, while air resistance generates movement in the opposite direction of the falling parachute, and essentially pushes the parachute upward. hope this helps!:)</span>
Answer:
the train is moving at the speed of v = 1.79 m/s
Explanation:
given,
rain drop is falling vertically down with the speed of = 3.84 m/s
angle of the rain drop = 25°
tan θ =
tan 25° =
v =3.84 × tan 25°
v = 1.79 m/s
hence, the train is moving at the speed of v = 1.79 m/s