Answer:
The magnitude of the force between the two parallel wires is 0.0111 N.
Explanation:
Given;
length of the two parallel wires, L = 42 m
distance between the two wires, r = 0.03 m
current in both wires, I₁, I₂ = 6.3 A
Therefore, the magnitude of the repulsive force between the two parallel wires is given by;

Therefore, the magnitude of the force between the two parallel wires is 0.0111 N.
Answer:
A body having uniform velocity has zero acceleration because
there is not change in velocity.
The quantity of matter in a body regardless of its volume or of any forces acting on it.
Answer:
Explanation:
Theorem of Binomial Distribution will apply here.
n = 29 , p = .67 , q = 0.33
mean = np = 29 x .67 = 19.43
Standard Deviation = √npq
= √29 x .67 x .33
= √6.4
= 2.53
=
Answer:
(a) 7.72×10⁵ J
(b) 4000 J
(c) 1.82×10⁻¹⁶ J
Explanation:
Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,
Ek = 1/2mv²................... Equation 1
Where Ek = Kinetic energy, m = mass, v = velocity
(a)
For a moving automobile,
Ek = 1/2mv².
Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s
Substitute into equation 1
Ek = 1/2(2.0×10³)(27.78²)
Ek = 7.72×10⁵ J
(b)
For a sprinting runner,
Given: m = 80 kg, v = 10 m/s
Substitute into equation 1 above,
Ek = 1/2(80)(10²)
Ek = 40(100)
Ek = 4000 J
(c)
For a moving electron,
Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s
Substitute into equation 1 above,
Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²
Ek = 1.82×10⁻¹⁶ J