1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
15

Two equal positive charges q1 = q2 = 2μC are located at x = 0, y = 0.30 m and x = 0, y = -0.30 m, respectively. What are the mag

nitude and direction of the total electric force that qı and q2 exert on a third charge Q = -4 μC at x = 0.40 m, y = 0.15 m?
Physics
1 answer:
creativ13 [48]3 years ago
8 0

Answer:

Fx=486.58(-i)*10^{-2} NN: Resulting force on Q in the direction of the x axis

Fy=162.49j(j)*10^{-2}N: Resulting force on Q in the direction of the y axis

Explanation:

To solve this problem we need 3 basic concepts:

1.Coulomb's law:

Two point charges (q1, q2) separated by a distance (r) exert a mutual force (F) whose magnitude is determined by the following formula:

F=k*(\frac{q1*q2}{r^{2} } ) Formula (1)

K=8.99*10^{9} \frac{N*m^{2} }{C^{2} }: Coulomb constant

q 1,q2=charge in Coulombs (C)  

The direction of F is determined by the unit vector ( r_{u}) in the direction of  F

r=r_{x} +r_{y}: position vector in the direction of F

r= (x2-x1)i+( y2-y1)j

The points (x1, y1) and (x2, y2) represent the position coordinates of the charges .

The sense of force depends on the sign of q1 and q2:

When the charges have opposite signs the force is attractive.

When the charges have an equal sign, the force is repulsion

2. Newton's third law: law of action and reaction

The magnitude of the force exerted by q1 on q2 is equal to the force exerted by q2 on q1, and these forces have the opposite direction.

<h3>F1-2=-F2-1 </h3>

Problem development

We have the forces exerted by the charges q1 + and q2 + on the load Q-.

The forces F1 and F2 on the load Q are attractive forces, Because of this the force comes out of Q and is directed towards q1 and q2

Calculation of vector r1 : points Q(0.4,0.15) , q1(0,0.3)

r1= (0- 0.4)i+(0.3-1.5)j  

r1=-0.4i+0.15j  

magnitude of r1

r1=\sqrt{-0.4^{2}+0.15^{2}  } =\sqrt{0.16+0.0225} =0.1825m

Calculation of vector r2 : points(0.4,0.15) (0,-0.3)

r2= (0- 0.4)i+(-0.3-1.5)j  

r2=(-0.4i-0.45j) m

magnitude of r2

r2=\sqrt{-0.4^{2}+(-0.45)^{2}  } =\sqrt{0.16+0.2025} =0.6 m

We apply formula 1 to calculate the magnitudes of F1 and F2 with the known data :

q1 = q2 = 2μC , r1= 0.1825m ,r2=0.6m,

K=8.99*10^{9} \frac{N*m^{2} }{C^{2} }

1 μC=10^{-6} C

F1=k*(2*10^{-6} *4*10^{-6} )/(0.1825^{2} )

F1=k*240.195*10^{-12}

F1=8.99*10^{9}  *240.195*10^{-12}=2159.352*10^{-3} =215.93*10^{-2} N

F2=k*(2*10^{-6}*4*10^{-6}) /(0.6)^{2}

F2=8.99*10^{9} *22.2*10^{-12} =199.77*10^{-3} =19,97*10^{-2} N

Calculation of the total electric force (F) exerted by the charges q1 and q2 on the charge Q

r_{u}=(r_{x} +r_{y} )/r: unit vector in the direction of r

F=F1(r_{u1})+F2(r_{u2} )

ru=(rx+ry)/r

F=\frac{215.93*(-0.4i+0.15j)}{0.1825} +\frac{19.93*(-0.4i-0.45j}{0.6} *10^{-2} N

F=(-473.27i+177.47j-13.31i-14.98j) ))*10e-2 N

F=(-486.58i+162.49j)*10^{-2} N

Answer:

Fx=486.58(-i)*10^{-2} NN: Resulting force on Q in the direction of the x axis

Fy=162.49j(j)*10^{-2}N: Resulting force on Q in the direction of the y axis

You might be interested in
Consider projectile thrown horizontally at 50 m/s from height of 19.6 meters. The projectile will take ______________ time to hi
aleksley [76]

Answer:

C)The Same

Explanation:

Kinematics equation:

y=v_{oy}*t+1/2*g*t^2

for both cases the initial velocity in the axis Y is the same, equal a zero.

So the relation between the height ant temps is the same for both cases (the horizontal velocity does not play a role)

C)The Same

3 0
3 years ago
A box of unknown mass is sliding with an initial speed vi = 5.60 m/s across a horizontal frictionless warehouse floor when it en
Maksim231197 [3]

We know that the Delta E + W(Work done by non-conservative forces) = 0 (change of energy)

In here, the non-conservative force is the friction force where f = uN (u =kinetic friction coefficient) 

W= f x d = uNd ; N=mg 
Delta E = 1/2 mV^2 -1/2mVi^2 

umgd + 1/2mV^2 - 1/2mVi^2 = 0 (cancel out the m term) 

This will then give us: 

1/2Vi^2-ugd = 1/2V^2 

V^2 = Vi^2 - 2ugd

So plugging in our values, will give us:

V= Sqrt (5.6^2 -2.3^2)

=sqrt (26.07)

= 5.11 m/s 

 

6 0
3 years ago
When a golf ball is hit, it travels at 41 meters per second. The mass of a golf ball is 0.045kg. Calculate the kinetic energy of
Fittoniya [83]

Answer:

  75.645 J

Explanation:

The kinetic energy is related to the mass and velocity by the formula ...

  KE = 1/2mv²

For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...

  KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J

__

The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².

4 0
2 years ago
A 10.2-kg mass is located at the origin, and a 4.6-kg mass is located at x = 8.1 cm. Assuming g is constant, what is the locatio
goldfiish [28.3K]

Answer:

center of mass of the two masses will lie at x = 2.52 cm

center of gravity of the two masses will lie at x = 2.52 cm

So center of mass is same as center of gravity because value of gravity is constant here

Explanation:

Position of centre of mass is given as

r_{cm} = \frac{m_1r_1 + m_2r_2}{m_1 + m_2}

here we have

m_1 = 10.2 kg

m_2 = 4.6 kg

r_1 = (0, 0)

r_2 = (8.1cm, 0)

now we have

r_{cm} = \frac{10.2 (0,0) + 4.6 (8.1 , 0)}{10.2 + 4.6}

r_{cm} = {(37.26, 0)}{14.8}

r_{cm} = (2.52 cm, 0)

so center of mass of the two masses will lie at x = 2.52 cm

now for center of gravity we can use

r_g_{cm} = \frac{m_1gr_1 + m_2gr_2}{m_1g + m_2g}

here we have

m_1 = 10.2 kg

m_2 = 4.6 kg

r_1 = (0, 0)

r_2 = (8.1cm, 0)

now we have

r_g_{cm} = \frac{10.2(9.8) (0,0) + 4.6(9.8) (8.1 , 0)}{10.2(9.8) + 4.6(9.8)}

r_g_{cm} = {(37.26, 0)}{14.8}

r_g_{cm} = (2.52 cm, 0)

So center of mass is same as center of gravity because value of gravity is constant here

3 0
3 years ago
A van has a weight of 4000 lb and center of gravity at Gv. It carries a fixed 900 lb load which has a center of gravity at Gl. I
natulia [17]

Answer:

 x = 25 / μ     [ ft]

Explanation:

To solve this exercise we can use Newton's second law.

Let's set a reference system where the x axis is parallel to the road

Y axis  

       N_B + N_A - W_van - W_load = 0

       N_B + N_A = W_van + W_load

X axis

     fr = ma

     a = fr / m

the total mass is

        m = (W_van + W_load) / g

the friction force has the expression

      fr = μ N_{total}

      fr = μy (W_van + W_load)

we substitute

      a = μ (W_van + W_load)    \frac{g}{W_van + W_load}

      a = μ g

taking the acceleration let's use the kinematic relations where the final velocity is zero

       v² = v₀² - 2 a x

       0 = v₀² -2a x

        x = \frac{v_o^2}{2a}

        x = \frac{v_o^2}{2 \mu g}

        x = \frac{40^2}{2 \ 32 \  \mu}

        x = 25 / μ     [ ft]

5 0
3 years ago
Other questions:
  • For a circuit shown in the figure, all quantities are accurate in 3 significant figures. What is the power dissipated in 2-ohm r
    12·1 answer
  • Find the length l of one "arch" of this cycloid, that is, find the distance traveled by a small stone stuck in the tread of a ti
    5·2 answers
  • 1. Given a list of atomic model descriptions:
    15·1 answer
  • A car is traveling at a velocity of 7.5 m/s. How far will it get in 34 sec
    10·1 answer
  • Two equal positive charges q1 = q2 = 2μC are located at x = 0, y = 0.30 m and x = 0, y = -0.30 m, respectively. What are the mag
    15·1 answer
  • In a bag there are 18 pink jellybeans, 22 purple jellybeans, 10 orange jellybeans, and 20 red jellybeans what is the probability
    15·1 answer
  • A ticker timer 50dots per second. When a body is pulled by a tap through the timer, the distance between the third and fourth do
    12·1 answer
  • You are stranded in a stationary boat. Your friend is on a dock, but the boat is just beyond his reach. There is a 5 kg anchor i
    11·1 answer
  • A movie stunt double is supposed to run across the top of a train (in the opposite direction that the train is moving) and just
    8·1 answer
  • How is newton’s first law of motion used for a person in a stationary car during a car crash
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!