Answer:
The energy stored in the solenoid is 7.078 x 10⁻⁵ J
Explanation:
Given;
diameter of the solenoid, d = 2.80 cm
radius of the solenoid, r = d/2 = 1.4 cm
length of the solenoid, L = 14 cm = 0.14 m
number of turns, N = 200 turns
current in the solenoid, I = 0.8 A
The cross sectional area of the solenoid is given as;

The inductance of the solenoid is given by;

The energy stored in the solenoid is given by;
E = ¹/₂LI²
E = ¹/₂(2.212 x 10⁻⁴)(0.8)²
E = 7.078 x 10⁻⁵ J
Therefore, the energy stored in the solenoid is 7.078 x 10⁻⁵ J
A moment is an expression involving the product of a distance and physical quantity, and in this way it accounts for how the physical quantity is located or arranged.
Answer:
29.75 revolutions
Explanation:
The kinematic formula for distance, given a uniform acceleration a and an initial velocity v₀, is

This car is starting from rest, so v₀ = 0 m/s. Additionally, we have a = 9.2/9.7 m/s² and t = 9.7 s. Plugging these values into our equation:

So, the car has travelled 44.62 m in 9.7 seconds - we want to know how many of the tire's <em>circumferences</em> fit into that distance, so we'll first have to calculate that circumference. The formula for the circumference of a circle given its diameter is
, which in this case is 47.8π cm, or, using π ≈ 3.14, 47.8(3.14) = 150.092 cm.
Before we divide the distance travelled by the circumference, we need to make sure we're using the same units. 1 m = 100 cm, so 105.092 cm ≈ 1.5 m. Dividing 44.62 m by this value, we find the number of revs is
revolutions
The average amount of solar energy incident on the PV per day is 10000 kWh/day.
<h3>
Equation</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
Let the PV array has an area equal to 50 square meters. Hence:
Average amount of solar energy incident on the PV per day = 200 kWh/m²/day * 50 m² = 10000 kWh/day.
Find out more on Equation at: brainly.com/question/2972832
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>