Answer:
The angle through which the wheel turned is 947.7 rad.
Explanation:
initial angular velocity,
= 33.3 rad/s
angular acceleration, α = 2.15 rad/s²
final angular velocity,
= 72 rad/s
angle the wheel turned, θ = ?
The angle through which the wheel turned can be calculated by applying the following kinematic equation;

Therefore, the angle through which the wheel turned is 947.7 rad.
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
Explanation:
It is given that,
Velocity in East, 
Velocity in North, 
(a) The resultant velocity is given by :

(b) The width of the river is, d = 80 m
Let t is the time taken by the boat to travel shore to shore. So,


t = 16 seconds
(c) Let x is the distance covered by the boat to reach the opposite shore. So,


x = 48 meters
Hence, this is the required solution.
This is a sneaky trick question, to help you discover whether you know
one of the differences between velocity and speed.
=======================================
If you make a list of the distances and directions, and ignore the times,
you find these:
4 - west, (3 + 1) - east . . . . . zero in the east/west direction
1.5 - north, 1.5 - south . . . . . zero in the north/south direction
This jogger went out, had a nice jog around the neighborhood,and ended up exactly where he started.
Average velocity = (distance between start point and end point) / (time)
IF the question asked for average SPEED, then you would need the total distance, and divide it by the total time. But it asks for VELOCITY, and <u>that</u> only involves the straight distance between the start point and the end point, regardless of the route taken in between.
The jogger ended up exactly where he started. The distance between start and end points was zero. Average velocity is (zero) / (time) . And that fraction is going to be <em><u>Zero</u></em>, no matter how long or how short the trip was, and no matter how much time it took.