Answer:
yes, eye color, hair color etc.
Answer:
The right answer is "1.369 m/s²".
Explanation:
The given values are:
Distance (s)
= 260 m
Initial speed (u)
= 26 m/s
Reaction time (t')
= 0.51 s
During reaction time, the distance travelled by locomotive will be:
⇒ 


Remained distance between locomotive and car:
⇒ 


Now,
The final velocity to avoid collection is, V = 0 m/s
From third equation of motion:
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
The speed of sound, in m/s, through air at this temperature is 343.5 m/s
Explanation:
Given;
distance traveled by sound, d = 1,687.5 meters
time taken for the sound to travel, t = 5 seconds
air temperature, θ = 10°C
Speed of sound = distance traveled by sound / time taken for the sound to travel
Speed of sound = d / t
= 1687.5 m / 5 s
= 337.5 m/s
Speed of sound at the given temperature is calculated as;
c = 337.5 + 0.6θ
c = 337.5 + 0.6 x 10
c = 337.5 + 6
c = 343.5 m/s
Therefore, the speed of sound, in m/s, through air at this temperature is 343.5 m/s
Answer:
D. the amount of chemical energy equals the amount of heat and light energy.
Explanation:
Given that the first law of thermodynamics affirmed that energy is neither created nor destroyed however, it can be transformed from one form to another. In other words, while, during the transformation of energy, no energy is lost, the input energy is also equal to output energy.
Hence, the chemical energy stored in the log is EQUAL to the heat and light energy produced by burning.